Characterizing the inverses of block tridiagonal, block Toeplitz matrices

نویسندگان

  • Nicholas M Boffi
  • Judith C Hill
  • Matthew G Reuter
چکیده

We consider the inversion of block tridiagonal, block Toeplitz matrices and comment on the behaviour of these inverses as one moves away from the diagonal. Using matrix Möbius transformations, we first present an O(1) representation (with respect to the number of block rows and block columns) for the inverse matrix and subsequently use this representation to characterize the inverse matrix. There are four symmetry-distinct cases where the blocks of the inverse matrix (i) decay to zero on both sides of the diagonal, (ii) oscillate on both sides, (iii) decay on one side and oscillate on the other and (iv) decay on one side and grow on the other. This characterization exposes the necessary conditions for the inverse matrix to be numerically banded and may also aid in the design of preconditioners and fast algorithms. Finally, we present numerical examples of these matrix types.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inversion of block matrices with block banded inverses: application to Kalman-Bucy filtering

We investigate the properties of block matrices with block banded inverses to derive efficient matrix inversion algorithms for such matrices. In particular, we derive the following: (1) a recursive algorithm to invert a full matrix whose inverse is structured as a block tridiagonal matrix; (2) a recursive algorithm to compute the inverse of a structured block tridiagonal matrix. These algorithm...

متن کامل

Convergence of GMRES for Tridiagonal Toeplitz Matrices

Abstract. We analyze the residuals of GMRES [9], when the method is applied to tridiagonal Toeplitz matrices. We first derive formulas for the residuals as well as their norms when GMRES is applied to scaled Jordan blocks. This problem has been studied previously by Ipsen [5], Eiermann and Ernst [2], but we formulate and prove our results in a different way. We then extend the (lower) bidiagona...

متن کامل

Solving a Structured Quadratic Eigenvalue Problem by a Structure-Preserving Doubling Algorithm

In studying the vibration of fast trains, we encounter a palindromic quadratic eigenvalue problem (QEP) (λ2AT +λQ+A)z = 0, where A,Q ∈ Cn×n and QT = Q. Moreover, the matrix Q is block tridiagonal and block Toeplitz, and the matrix A has only one nonzero block in the upperright corner. So most of the eigenvalues of the QEP are zero or infinity. In a linearization approach, one typically starts w...

متن کامل

The spectral decomposition of near-Toeplitz tridiagonal matrices

Some properties of near-Toeplitz tridiagonal matrices with specific perturbations in the first and last main diagonal entries are considered. Applying the relation between the determinant and Chebyshev polynomial of the second kind, we first give the explicit expressions of determinant and characteristic polynomial, then eigenvalues are shown by finding the roots of the characteristic polynomia...

متن کامل

A Direct Elliptic Solver Based on Hierarchically Low-rank Schur Complements

Cyclic reduction was conceived for the solution of tridiagonal linear systems, such as the one-dimensional Poisson equation [11]. Generalized to higher dimensions, it is known as block cyclic reduction (BCR) [4]. It can be used for general (block) Toeplitz and (block) tridiagonal linear systems; however, it is not competitive for large problems, because its arithmetic complexity grows superline...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014